Environment is simply, the world in which we live. Footsteps of civilizations are the deserts on the face of earth. The man is exploiting the nature and the natural resources just for the sake of his comforts and leisure. In this way, we are, in fact, living & borrowing the times and lives of our grandchildren and beyond. Environmental education has been accepted as the compulsory subject worldwide. Environmental Education is a way of implementing the goals of environmental protection. India has
accepted environmental education with the recommendation of Tiwari Committee (1980) and a department of Environment was set up in 1982 at Ahmedabad. Environment Education is the subject for everyone. **The earlier one starts, the better are results.** So, our students in their primary classes should be given enriched educational programme based on enhancing their environmental awareness and sensitivity. Environmental awareness is knowing and understanding about various environmental issues, their significance, needs to preserve and methods to protect the environment. Knowledge without love and empathy cannot stick. But if love comes first, knowledge is sure to follow. So, environmentally sensitive individual must be produced out of the process of education. Environmental Sensitivity refers to an empathetic view of environment and of its problems and issues. Learning by experience makes the student sensitive towards the environment and environmental problems, also it arouses teacher’s confidence level:- just there is a need to plan it properly. Learning as a cycle that begins with experience, continues with reflection and later leads to action, which itself becomes a concrete experience for reflection, is experiential learning. In the present study, the investigator proposed to provide experiential learning by means of outdoor experiences, fun activities and use of media. As it is believed that the more personal children’s experience with nature, the more environmentally concerned and active children are likely to become. The student’s hands-on- experiences in nature will make them more sensitive and much aware towards the environment. Locus of control was selected as the classification variable in the present study. Locus of control refers to a set of
beliefs about the relationship between behaviour and the subsequent occurrence of rewards and punishment. The student with internal locus of control believe that reinforcements either positive or negative are perceived by the individual as being the result of his /her own behaviour, where as externals believe that the reinforcement occur as a result of luck, chance and their own fate as determined earlier, so it is not under their own control. Researches tell that an important factor in whether as individual will engage in environmental responsible behaviour is that person’s locus of control or feeling of effectiveness. (Hines et.al.1987).

NEED OF THE STUDY:

Environmental Education is the need of the hour that is why EVS is introduced as compulsory subject right from the beginning of primary classes. But, as noted by Aldo Leopold (1944) “Acts of conservation without the requisite desires and skill are futile, to create these desires and skills are community motive, is the task of Education.”

So there is a need to provide environmental education by introducing actual hands on experiences in order to make them aware and sensitive to environmental problems and their solutions.

In the present study, experiential learning strategies were compared with traditional learning method in environmental education. It is the learning through direct experiences embedded with the basic qualities of personal involvement, learner-initiated, evaluated by learner and has pervasive effects on learning (Rogers 1969). It is constructive learning, composed of three components
Knowledge: Concepts, facts information and prior experience:
Activity: Knowledge applied to current ongoing events and
Reflection: Thoughtful analysis and assessments of one’s own activity and its contribution to personal growth (IEL, 1979).

Experts from Piaget (1973) final writing indicate that the famous Swiss scholar viewed the ‘action base’ to learning in a more cognitive manner that many currently believe.

He states that ‘Action is only constructive when it involves the participation of child himself. It is absolutely necessary that they form hypotheses and verify them through their own active manipulation”. Further clarifying that Piaget meant by the action base to learning, those who have worked with him have written “Being cognitively active does not mean that the child merely manipulates. He can be mentally active without physical manipulation just as he can be mentally passive while actually manipulating objects.

So, the investigator proposed to study the effect of experiential learning strategies for the enhancement of environmental awareness as well as sensitivity of the primary students with internal and external locus of control.

STATEMENT OF THE PROBLEM:

“EFFECTIVENESS OF EXPERIENENTIAL LEARNING STRATEGIES FOR ENHANCING ENVIRONMENTAL AWARENESS AND SENSITIVITY AMONG PRIMARY SCHOOL STUDENTS WITH INTERNAL AND EXTERNAL LOCUS OF CONTROL”.
OBJECTIVES OF THE STUDY:

• To develop instructional material for implementing experiential learning strategies for class IV students in Environmental Studies (EVS).

• To compare the effectiveness of experiential learning strategies and traditional learning methods for enhancing environmental awareness among students with internal and external locus of control.

• To compare the effectiveness of experiential learning strategies and traditional learning methods for enhancing the environmental sensitivity among students with internal and external locus of control.

HYPOTHESES RELATED TO MEAN GAIN SCORES ON ENVIRONMENTAL AWARENESS

H₁ The two instructional treatments yield comparable mean gain scores on environmental awareness of the students.

H₂ There is no significant difference in the mean gain scores of environmental awareness of the students with internal and external locus of control.

H₃ Comparable mean gain on environmental awareness scores are yielded by the student at knowledge and comprehension categories of objectives.

H₄ There is no significant interaction between instructional treatments and locus of control.
H₅ There is no significant interaction between instructional treatments and categories of objectives.

H₆ There is no significant interaction between locus of control and categories of objectives.

H₇ The two instructional treatments attain comparable mean gain scores on environmental awareness with internal and external locus of control at knowledge and comprehension categories of objectives.

HYPOTHESES RELATED TO MEAN GAIN SCORES ON VARIOUS DOMAINS OF ENVIRONMENTAL AWARENESS

H₈ The two instructional treatments yield comparable mean gain scores on total environmental awareness of the students.

The two instructional treatments yield comparable mean gain scores on environmental awareness of the students with respect to:

H₈.₁ Domain I viz., Similarities and differences between living and non-living, parts of plant and our internal organs.

H₈.₂ Domain II viz., The waste in home and in school, its effects on surrounding and proper ways of its disposal.

H₈.₃ Domain III viz., Natural resources, forest, animal, water, energy, food and land, need to preserve and save them.

H₈.₄ Domain IV viz., Types and causes of pollution.

H₈.₅ Domain V viz., Reuse and recycling of waste material, local agencies responsible for its disposal.
H₉.₆ Domain VI viz., General awareness.

H₉ There is no significant difference in mean gain scores on total environmental awareness of the student with internal and external locus of control.

There is no significant difference in mean gain scores on environmental awareness of the students with internal and external locus of control with respect to:

H₉.₁ Domain I viz., Similarities and differences between living and non-living, parts of plant and our internal organs.

H₉.₂ Domain II viz., The waste at home and in the school, its effects on surrounding and proper ways of its disposal.

H₉.₃ Domain III viz., Natural recourses, forest, animals, water, energy, food and land, need to preserve and save them.

H₉.₄ Domain IV viz., Types of causes of pollution.

H₉.₅ Domain V viz., Reuse and recycling of waste material, local agencies responsible for the disposal.

H₉.₆ Domain VI viz., General awareness.

H₁₀ There is no significant interaction between instructional treatments and locus of control on total environmental awareness of the students.

There is no significant interaction between instructional treatments and locus of control on total environmental awareness of the students with respect to:
H_{10.1} Domain I viz., Similarities and differences between living and non-living, parts of plant and our internal organs.

H_{10.2} Domain II viz., The waste at home and in school, its effects on surrounding and proper ways of its disposal.

H_{10.3} Domain III viz., Natural resources, forest, animals, water, energy, food and land, need to preserve and save them.

H_{10.4} Domain IV viz., Types of causes of pollution.

H_{10.5} Domain V viz., Reuse and recycling of waste material, local agencies responsible for the disposal.

H_{10.6} Domain VI viz., General awareness.

HYPOTHESES RELATED TO MEAN GAIN SCORES ON ENVIRONMENTAL AWARENESS AT KNOWLEDGE CATEGORY OF OBJECTIVES ON VARIOUS DOMAINS

H_{11} The two instructional treatments yield comparable mean gain scores on environmental awareness of the students at knowledge category of objectives.

The two instructional treatments yield comparable mean gain scores on environmental awareness of the students at knowledge category of objectives with respect to:

H_{11.1} Domain I viz., Similarities and difference between living and non-living, parts of plant and our internal organs.
\textbf{H_{11.2}} Domain II viz., The waste at home and in the school, its effect on surroundings and proper ways of its disposal.

\textbf{H_{11.3}} Domain III viz., Natural resources, forest, animals, water, energy, food and land, need to preserve and save them.

\textbf{H_{11.4}} Domain IV viz., Types and causes of pollution.

\textbf{H_{11.5}} Domain V viz., Reuse and recycling of waste material, local agencies responsible for the disposal.

\textbf{H_{11.6}} Domain VI viz., General awareness.

\textbf{H_{12}} There is no significant difference in the mean gain scores on environmental awareness of the students with internal and external locus of control.

There is no significant difference in the mean gain scores on environmental awareness of the students with internal and external locus of control with respect to:

\textbf{H_{12.1}} Domain I viz., Similarities and difference between living and non-living, parts of plant and our internal organs.

\textbf{H_{12.2}} Domain II viz., The waste at home and in the school, its effect on surroundings and proper ways of its disposal.

\textbf{H_{12.3}} Domain III viz., Natural resources, forest, animals, water, energy, food and land, need to preserve and save them.

\textbf{H_{12.4}} Domain IV viz., Types and causes of pollution.

\textbf{H_{12.5}} Domain V viz., Reuse and recycling of waste material, local agencies responsible for the disposal.
H_{12.6} \ Domain VI \ viz., \ General \ awareness.

H_{13} \ There \ is \ no \ significant \ interaction \ between \ instructional \ treatments \ and \ locus \ of \ control.

There \ is \ no \ significant \ interaction \ between \ instructional \ treatments \ and \ locus \ of \ control \ with \ respect \ to:
H_{13.1} \ Domain I \ viz., \ Similarities \ and \ difference \ between \ living \ and \ non-living, \ parts \ of \ plant \ and \ our \ internal \ organs.

H_{13.2} \ Domain II \ viz., \ The \ waste \ at \ home \ and \ in \ the \ school, \ its \ effect \ on \ surroundings \ and \ proper \ ways \ of \ its \ disposal.

H_{13.3} \ Domain III \ viz., \ Natural \ resources, \ forest, \ animals, \ water, \ energy, \ food \ and \ land, \ need \ to \ preserve \ and \ save \ them.

H_{13.4} \ Domain IV \ viz., \ Types \ and \ causes \ of \ pollution.

H_{13.5} \ Domain V \ viz., \ Reuse \ and \ recycling \ of \ waste \ material, \ local \ agencies \ responsible \ for \ the \ disposal.

H_{13.6} \ Domain VI \ viz., \ General \ awareness.

HYPOTHESES \ RELATED \ TO \ MEAN \ GAIN \ SCORES \ ON \ ENVIRONMENTAL \ AWARENESS \ AT \ COMPREHENSION \ CATEGORY \ OF \ OBJECTIVES

H_{14} \ The \ two \ instructional \ treatment \ yield \ comparable \ mean \ gain \ scores \ on \ environmental \ awareness \ of \ the \ students \ at \ comprehension \ category \ of \ objectives.
The two instructional treatment yield comparable mean gain scores on environmental awareness of the students at comprehension category of objectives with respect to:

H\textsubscript{14.1} Domain I viz., Similarities and difference between living and non-living, parts of plant and our internal organs.

H\textsubscript{14.2} Domain II viz., The waste at home and in the school, its effect on surroundings and proper ways of its disposal.

H\textsubscript{14.3} Domain III viz., Natural resources, forest, animals water, energy, food and land, need to preserve and save them.

H\textsubscript{14.4} Domain IV viz., Types and causes of pollution.

H\textsubscript{14.5} Domain V viz., Reuse and recycling of waste material, local agencies responsible for the disposal.

H\textsubscript{14.6} Domain VI viz., General awareness.

H\textsubscript{15} There is no significant difference in the mean gain scores on environmental awareness of the students with internal and external locus of control.

There is no significant difference in the mean gain scores on environmental awareness of the students with internal and external locus of control with respect to:

H\textsubscript{15.1} Domain I viz., Similarities and difference between living and non-living, parts of plant and our internal organs.
H_{15.2} Domain II viz., The waste at home and in the school, its effect on surroundings and proper ways of its disposal.

H_{15.3} Domain III viz., Natural resources, forest, animals, water, energy, food and land, need to preserve and save them.

H_{15.4} Domain IV viz., Types and causes of pollution.

H_{15.5} Domain V viz., Reuse and recycling of waste material, local agencies responsible for the disposal.

H_{15.6} Domain VI viz., General awareness.

H_{16} There is no significant interaction between instructional treatments and locus of control.

There is no significant interaction between instructional treatments and locus of control with respect to:

H_{16.1} Domain I viz., Similarities and difference between living and non-living, parts of plant and our internal organs.

H_{16.2} Domain II viz., The waste at home and in the school, its effect on surroundings and proper ways of its disposal.

H_{16.3} Domain III viz., Natural resources, forest, animals water, energy, foods and land, need to preserve and save them.

H_{16.4} Domain IV viz., Types and causes of pollution.

H_{16.5} Domain V viz., Reuse and recycling of waste material, local agencies responsible for the disposal.
H16.6 Domain VI viz., General awareness.

HYPOTHESES RELATED TO MEAN GAIN SCORES ON ENVIRONMENTAL SENSITIVITY

H17 The two instructional treatment yield comparable mean gain scores on environmental sensitivity of the students.

The two instructional treatment yield comparable mean gain scores on environmental sensitivity of the students with respect to:

H17.1 Domain I viz., Population Explosion.
H17.2 Domain II viz., Health and Hygiene.
H17.3 Domain III viz., Environmental pollution.
H17.4 Domain IV viz., Wildlife and forests.
H17.5 Domain V viz., Environmental concern/ sensitivity/ empathy.
H17.6 Domain VI viz., Responsible environmental behaviour for its conservation.

H18 There is no significant difference in the mean gain scores on environmental sensitivity of the students with internal and external locus of control.

There is no significant difference in the mean gain scores on environmental sensitivity of the students with internal and external locus of control with respect to:
H_{18.1} Domain I viz., Population Explosion.

H_{18.2} Domain II viz., Health and Hygiene.

H_{18.3} Domain III viz., Environmental pollution.

H_{18.4} Domain IV viz., Wildlife and forests.

H_{18.5} Domain V viz., Environmental concern/ sensitivity/ empathy.

H_{18.6} Domain VI viz., Responsible environmental behaviour for its conservation.

H_{19} There is no significant interaction between instructional treatments and locus of control on environmental sensitivity of the students.

There is no significant interaction between instructional treatments and locus of control on environmental sensitivity of the students with respect to:

H_{19.1} Domain I viz., Population Explosion.

H_{19.2} Domain II viz., Health and Hygiene.

H_{19.3} Domain III viz., Environmental pollution.

H_{19.4} Domain IV viz., Wildlife and forests.

H_{19.5} Domain V viz., Environmental concern/ sensitivity/ empathy.

H_{19.6} Domain VI viz., Responsible environmental behaviour for its conservation.
Delimitations:

The study was conducted on class IV students of Environmental Studies. Students were taught topics of EVS from their syllabus by same selected environmental learning strategies.

The experiment was limited to about 50 working days of the academic session.

The experiment was delimited to class IV students of two schools of Ropar.

Tools Used:

For the present investigation, following tools were used:

1. Development of instructional material for implementing experiential learning strategies (Developed by the investigator).

2. Development of formative tests in areas of Environment Awareness (Developed by the investigator).

3. Development of Environmental Awareness test (Developed by the investigator).

4. Development of Environmental Sensitivity scale (Developed by the investigator).

5. Locus of Control test (for primary children) internal and external scale constructed and standardized by Pal, R., (1982)All of the above tools have been explained in Chapter IV.
Sample:

Firstly, the investigator approached Principals of various schools to seek their cooperation for conducting the experiment. After obtaining permission and promise of co-operation from the two schools viz; Shivalik Public School, Ropar and Rayat International School, Ropar, test of locus of control (constructed and standardized by Pal R., (1982) was administered to 380 students of the two schools. Time limit for the test was one and a half hour, sheets were provided to the students. Scoring was done with the help of scoring key. The score of the students on LOC test were arranged in an ascending order. In accordance with manual, students with external and internal LOC were identified. Thus 60 students with internal LOC and 60 with external LOC were selected. Each of the two groups were randomly allocated to the two subgroups. i.e. Experimental group and the control group. So the final sample comprised of 120 students.

DESIGN OF THE STUDY:

Experimental method of research was followed. Pre-test, post-test control group with one experimental group was employed.

Independent Variable

Instructional treatment

• Experimental group-T₁

(exposed to experimental learning strategies)
• Control group – T2
 (exposed to traditional learning methods)

• Classification Variable
 Locus of Control
 Internal Locus of control – L1
 External locus of control – L2

Dependent Variables
 o Gain scores in Environmental Awareness
 o Gain scores in Environmental Sensitivity
 Categories of Objective
 o O1 – Knowledge category of objective.
 o O2 – Comprehension category of objective.

The first 2 X 2 X 2 factorial designed was employed with the help of ANOVA for analyzing the mean gain scores on environmental awareness of the students. Variable of instructional treatment was studied at two levels viz; experimental group (T1) which was taught by experimental learning strategy and the control group (T2) which was taught by traditional learning method. Variable of locus of control was studied with respect to internal and external locus of control. The third variable of categories of objectives was studied at knowledge and comprehension level.

Two 2 X 2 factorial designs were employed to analyze scores on gain in knowledge and gain in comprehension scores with respect to environmental awareness. The two independent variables were instructional treatment and locus of control. Instructional
treatment was studied at two levels viz; T\(_1\) (experiential learning strategies) and T\(_2\) Traditional learning method). Locus of control was studied at two levels viz; Internal (L\(_1\)) and External (L\(_2\)) levels.

PROCEDURE: Procedure of the experiment comprised of two main stages, viz., selection of the sample and conducting the experiment.

Pilot study – In order to determine the effectiveness of the various tools developed by the investigator, a pilot study was conducted on 25 students of class IV viz; Administering Environmental Awareness test and Administrating Environmental sensitivity scale in the first stage, Implementing 50 Action oriented lesson in the second stage and again administering EAT and ESS in the third stage, Difference of scores of post test Pre test on Environmental awareness test and Environment sensitivity scale indicated whether the lesson were workable or not. Some changes, were made based upon student’s suggestion.

Stage 1 Selection of the sample – The present test was conducted on 120 class IV students form Shivalik School Ropar and Rayat International School, Ropar. Class IV students were selected for experimentation after administering LOC test to 380 class IV students. Each group consisted of randomly allocated students with internal and external locus of control. The investigator contacted many experts in the area of Environmental Education of various schools, Colleges and at University level too for validation of the tools.
Stage 2 Conducting the experiment – The experiment was conducted in three phases as given below:

Phase 1 - Administration of the Pre-Test.

Phase 2 – Conducting the instructional program.

Phase 3 – Administration of the Post Test.

Phase 1 – Administration of the pre test – This phase involved the administration of the following tests to the students of the experimental group and the control group viz; Environmental Awareness test and Environmental Sensitivity scale.

Phase 2 – Conducting the instructional programme - Fifty action oriented experiential learning strategies were woven around students involvement and participation, where students learnt by the use of media, outdoor experiences and for based hands-on activities. The students learnt EVS by watching presentation on CD-Roams, by experiencing in short trips, excursions, rallies, visiting sites with natural beauty on one hand and polluted area on the other hands and by number of from activities like cartooning, puppet-show, fancy-dress show, playing drama, plantation in the school garden, collecting litter in the playgrounds, learning composting by hands-an-activities, drawing and coloring competitions, dancing and enjoying in the lap of nature itself etc.

Six formative tests on six area of EVS were administered to the students to know their learning progress. The control group was taught similarly topics of EVS through traditional learning methods by the investigator herself for 50 days.
Phase 3 – Administration of the post-test - Immediately after the instructional treatment of 50 days was over, the subjects were assessed by administration of following tests to both of the experimental and control groups, Environmental Awareness test and Environmental Sensitivity Scale.

Statistical Techniques:

The following statistical techniques were employed to analyze the data obtained from the experiment to test the hypotheses:

- Qualitative analysis of formative test scores.
- Descriptive statistical techniques like mean, S.D.’s of environmental awareness and environmental sensitivity.
- Factorial design 2 X 2 X 2 Analysis of variance for mean gain on environmental awareness score.
- Factorial design 2 X 2 Analysis of Variance for mean gain on environmental awareness scores at knowledge category of objective in various domains.
- Factorial Design 2 X 2 Analysis of variance for mean gain on environmental awareness score at comprehension category of objectives in various domains.
- Factorial design 2 X 2 Analysis of Variance for mean gain on environmental sensitivity scale.
- For further investigation t-test was employed, wherever F-ratios were found to be significant.
MAJOR FINDINGS:

The findings of study have been given below in two parts viz;

• Finding pertaining to mean gain scores on Environment Awareness.

• Finding pertaining to mean gain scores on environment sensitivity.

Finding pertaining to mean gain score on environmental awareness:

• The two instructional treatments did not yield comparable mean gain score on environment awareness of the students. The students of experimental group taught EVS by experiential learning strategies exhibited better environmental awareness as compared to the students taught by traditional instruction.

• There is significance difference in mean gain scores of environmental awareness of the students with internal and external locus of control. Internal exhibited better mean gain scores on environmental awareness than the students with external locus of control.

• Comparable mean gain on environment awareness score were not yielded by the students at knowledge and comprehension category of objectives. The students performed better at comprehension than at knowledge category of objectives.
• There was no significant interaction between instructional treatments and types of locus of control.

• There was no significant interaction between instructional and categories of objectives.

• There was no significant interaction between locus of control and categories of objectives.

• The two instructional treatments attained comparable mean gain scores on environmental awareness with internal and external locus of control at knowledge and comprehension categories of objectives.

• Students taught by experiential learning strategies exhibited better performance on total environmental awareness and on all of its domains viz; Domain I Similarities and differences between living and non living, parts of plant, their functions and over internal organs. Domain II – The waste at home and in school, its effects on surroundings, Proper ways of its disposal, Domain III – Natural resources, forest, animals, water, energy, food and land, needs to preserve them and ways to save them, Domain IV – Types and causes of pollution, Domain V – Reuse and recycling of waste material, local agencies responsible for waste disposal, Domain VI- General Awareness.

• There was significant difference in the mean gain score on environmental awareness of the students with internal and external locus of control for domains IV and V and for total also. Internals exhibited better Environmental Awareness for domain IV viz., Types and causes of pollution and domain V viz., Reuse and recycle
of waste material, local agencies responsible for waste disposal. But there was no significant difference in the mean gain scores on environmental awareness of the students with internal and external locus of control for domain I viz., Similarities and differences between living and non-living, parts of a plant, their functions and our internal organs domain II viz., The waste at home and in waste disposal, effect on surrounding, Proper ways of waste disposal, domain III viz., Natural resources, forest, animals, water energy, food and land, need to preserve them and ways to save them, domain VI viz., General awareness.

- There was no significant interaction between instructional treatments and locus of control on total environment awareness of the students and for its six domains viz., domain I – Similarities and differences between living and non-living, parts of a plant, their functions and our internal organs, domain II- The waste at home and in school, its effect on surrounding, Proper ways of waste disposal, domain III; Natural resources, forest, animals, water energy, food and land needs to preserve them and ways to save them, domain IV Types and causes of pollution, domain V Reuse and recycling of waste material, local agencies responsible for waste disposal & domain VI- General awareness.

- The experiential learning strategies yielded significantly better mean gain scores on environmental awareness of the students at knowledge category of objective with respect to the various domain.

- There was significant difference in the mean gain scores on environmental awareness of the students with internal and externals Locus of control and internal performed better than
externals. Also internals exhibited better Environmental Awareness than externals for domain IV Types and causes of pollution and domain V – Reuse and recycling of waste material local agencies responsible for waste of waste disposal. But, for domain I- Similarities and differences between living and non-living of a plant, their functions and our internal organs, domain II- The waste at home and in the school, its effects on surroundings, Proper ways of it waste disposal, domain III – Natural resources, forest, animals, water, energy, food and land, needs to preserve them and ways to save them and domain VI- General Awareness. Internals and externals exhibited comparable Environmental Awareness at knowledge and comprehension categories of objectives.

- There was no significant interaction between instructional treatments and locus of control at knowledge category of objective with respect to various six domains.

- Experiential learning strategies yielded significantly better mean gain scores on environmental awareness of the students for comprehension category of objectives with regards to various six domains.

- Internals exhibited better Environmental Awareness that their counterparts viz; externals at comprehension category of objectives and domain IV and V viz; Types and causes of pollution and Reuse and recycling of waste material, local agencies responsible for waste disposal.
• There was no significant interaction between instructional treatments and types of locus of control on Environmental Awareness at comprehension category of objectives with respect to various domain.

Finding pertaining to mean gain scores on environmental sensitivity of the students

• Experiential learning strategies exhibited better environment sensitivity as compared to the students taught EVS by traditional learning methods. Also, students of experimental groups exhibited better sensitivity towards domain I, population explosion, domain II- Health and Hygiene, domain III- Environmental pollution, domain IV-Wildlife and forests. Domain V – Environmental concern/sensitivity/empathy and domain VI – Responsible Environmental behaviour for its conservation.

• There was no significant interaction between instructional treatments and locus of control on Environmental Sensitivity of the students. But, with respect to domain IV viz., Wildlife and Forests, there was significant interaction between instructional treatments and locus of control.

• Internals exhibited better Environmental Sensitivity than external, further for domain IV, V, and VI pertaining to Wildlife forests, environmental concern/sensitivity/empathy and Responsible environmental behaviour for its conservation, also internals exhibited better environmental sensitivity. But internals and externals exhibited comparable sensitivity with respect to
domain I- Population Explosion, domain II-Health and Hygiene and domain III – Environmental pollution.

- With respect to domain IV, viz., Wildlife and forests, students with internal locus of control exhibited better environmental sensitivity when taught by experiential learning strategies as compared to traditional instruction.

- Internal exhibited better sensitivity than externals on domain IV when taught by experiential learning strategies.

- Internals and externals exhibited better comparable environmental sensitivity when taught by traditional methods of learning.

- Externals taught by experiential learning strategies exhibited better sensitivity that internals taught by traditional method.

Educational Implication:

The present study has revealed that instructional treatment has an impact upon cognitive as well as conative level of learning. Students taught Environment Studies by action oriented experiential learning strategies attained better than the students taught by traditional instructional methods. Students showed significant environmental sensitivity when taught by action oriented experiential learning strategies.

Teachers should use experiential learning strategies to teach Environment Studies especially to the primary classes. Once developed is difficult to modify. So, it is essential that pupil in this tender age should be taught such a subject with lots of
enthusiasm so that their true awareness for environment, its problems and its solution may bring true and sincere feelings i.e. sensitivity for them and they may take initiative themselves to minimize such problems in their surroundings.

So experiential learning is much useful:

- To enhance awareness and sensitivity of the pupil regarding a particular subject.

- To develop attitude and values among the pupil which will practically help in the solution of the problem.

- To arouse their emotions and actual beliefs by real hand-on-experiences.

- To teach them at consciously cognitive, conative and psychomotor objectives of learning.

So, experiential learning should be maximum used in our teaching – learning process. As in the present study, we have learnt that irrespective of locus of control of the pupil, it enhanced their environmental awareness and sensitivity, so experiential learning should be maximizes used for other subjects too.

• “By exploiting the natural resources, we are borrowing the times and lives of even our grand children and beyond that,” so sensitization of this problem along with its awareness is the solution, we are to teach to our students today.

• Environmental education pursues a powerful mixture of deep understanding tied to the ability to apply what has been learned,
this fuller approach is only environmental awareness, we need to impart among the students.

- A large percentage of the population lives in poverty, with few options to choose environmentally appropriate lifestyles. Others are in position to make environmentally sensitive decisions but do not do so, partly because the lack of awareness. So, we need to make people aware about environment through education.

- Knowledge without love and empathy will not stick. But if love comes first, knowledge is sure to follow. Nature itself is children's best teacher. So we need to allow children exposure to the nature.

Experience is the child of thought and thought is the child of action. So to result in desirable actions, experiential learning strategies must be adopted.

When the syllabus on EVS for children at different stages of school education are finalized, different spots for the essential field visits as educational excursion can be identified and listed comprehensively.

The more personal children’s experience with nature, the more environmentally concerned and active children are likely to become.

It is the nature of the young children that they can not be immobile. Movement is their natural action. They should, therefore be taught according to their nature i.e. by play-way, by fun activities, by various other outdoor activities and so experiential learning strategies should be adopted in the schools.
Extinction of experience is the reason of misconception and lack of true knowledge. So curriculum should be based on experiences especially for young children.

The supreme court of India in several direction has emphasized the need to use the mass media especially TV for promoting environmental awareness.

Locus of control has a major effect on action behaviors. So, in the primary stage when the children are in the process of building their locus of control, they need to be taught by providing number of experiences.

As the child attains increasing personal mastery over the environment, internal belief usually grows. Mastery over the environment can be generated out of the number of well planned hands on activities & experience.

Environmental Education is the subject for everyone. The earlier one starts the better are results.

Interaction with natural environment during individual is early life is important in developing attitude for the environment.

The goals of environmental action-oriented lessons are to develop students as thinking-feelings acting human beings.

It children don’t develop a sense of respect and caring for the natural environment during their few years, they are at the risk for never developing such attitudes.
Suggestions for further Research:

The present study was confined to teaching EVS. Similar research can be conducted to determine the effectiveness of experiential learning strategy for teaching science and social studies too.

A similar investigation may be conducted on different levels i.e. different subjects.

- Research may be conducted involving other important variables such as creativity, motivation, self concept, cognitive styles and study habits too.

- The Present study may be replicated on a large population for greater validation of results.

- Effectiveness of experiential learning may be researched at larger scale for bearers of different age groups, subject area etc.

- Experiential learning methods may be much fruitful for disabled students or students with special needs. As it is the way to tech them, it may be researched further.

- Student’s interest to study by experiences may further be probed and their effect on Motivation may also be studied.